A ¹³C-NMR STUDY OF THE CARBOHYDRATE PORTION OF RISTOCETIN A

Michael P. Williamson and Dudley H. Williams

University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, U K.

Summary A 13 C NMR study of the antibiotic ristocetin A establishes two changes which must be made to the structures hitherto accepted for the carbohydrate portion of the antibiotic.

Ristocetin A (1) is a glycopeptide antibiotic (identical to ristomycin A^1) for which a ψ -aglycone structure has recently been determined.² The structure of the carbohydrate molety has been elucidated by Hungarian and Russian groups,³ the only points of doubt being the ring size of an arabinose molety (for which conflicting evidence has been provided^{3a, b}), and the anomeric configuration of a monosaccharide unit, mannose. These points have been clarified by the application of ¹³C NMR. Our conclusions are now presented, and agree fully with those independently reached by Sztaricskai et al.⁴

Ristocetin B is identical to ristocetin A (1) except that it lacks a D-arabinosyl-(l+2)-O- α -D-mannopyranosyl residue (which is attached to C-2 of glucose in <u>1</u>). It is therefore possible to identify the resonances originating from the anomenic carbons of arabinose and the mannose to which it is attached, and of glucose, by comparison of the ¹³C spectra of ristocetins A and B. Spectra were obtained at 25.2 MHz at 80°C in D₂O on a Varian XL-100 spectrometer, and collected with 6K data points. Using model compounds, and the slower longitudinal relaxation rate of the signal found at 110.3 ppm in ristocetin A and absent in ristocetin B, this signal may be assigned to the arabinose abomeric carbon. This remarkably low field signal can only arise from an α -D-arabinofuranoside, as can be seen by comparison of data for methyl α - and β -D-arabino-furanoside and -pyranoside (Table). In addition, two high-field sugar resonances at 85.3 and 82.1 ppm cannot be assigned to any other sugar residue by chemical shift arguments, and confirm the presence of an α -D-arabinofuranoside,

												0.5
Chemical shifts /	(ppm	downfield	from	TMS)	found	for	methyl	arabinosides	ın	D_O	at	35°C°

Carbon	Methyl α-D- arabinofuranoside	Methyl β-D- arabinofuranoside	Methyl α-D- arabınopyranosıde	Methyl β-D- arabınopyranosıde		
1	109.3	103.2	105.1	101.0		
2	81.9	77.5	71.8	69.4		
3	77.5	75.7	73.4	69.9		
4	84.9	83.1	69.4	70 _° 0		
5	62.4	64.2	67.3	63.8		

The other anomeric signals may be assigned by off-resonance studies, which show that the anomeric carbon of the monosaccharide mannose unit resonates at 98.2 ppm. This chemical shift may be compared with 101.5 ppm found for α -[p-nitrophenyl]-D-mannopyranoside,⁶ and an estimated 103.7 ppm for the β -form, indicating the probability of an α -linkage The α -linkage was confirmed by a ${}^{1}J_{Cl-H}$ of 173 ±2 Hz in agreement with a calculated value of 173 Hz for aryl α -linkages, and quite different from the value of 163 Hz for aryl β -linkages.⁷

Thus, the corrected portion of the structure of ristocetin A is as shown in 2. Complete details of the assignment will be presented elsewhere.

<u>Acknowledgements</u> We thank Lundbeck & Co., Copenhagen, for gifts of ristocetin A and B, and the Science Research Council and the SKF Foundation for financial support.

REFERENCES

- 1. D.H. Williams, V. Rajananda, and J.R. Kalman, J. C. S. Perkin I, 787 (1979).
- 2. a) J.R. Kalman and D.H. Williams, J. Am Chem. Soc., 102, 897 (1980).
 - b) D.H. Williams, V. Rajananda, G. Bojesen, and M.P. Williamson, J. C. S. Chem. Commun., 906 (1979).
- 3. a) F. Sztaricskai, R. Bognár, and M.M. Puskás, Acta. Chim. Sci. Hung., 84, 75 (1975).
 - b) A. Neszmélyi, F. Sztaricskai, A. Lipták, and R. Bognár, <u>J. Antibiot.</u>, <u>31</u>, 974 (1978).
 - C) N.N. Lomakina, R. Bognár, M.G. Brazhnikova, F. Sztaricskai, and L.I. Muravyeva, Abstracts, 7th International Symposium on the Chemistry of Natural Products, Zinate, Riga, 1970. p625
 - d) R. Bognár, F. Sztarıcskaı, M.E. Munk, and J. Tamas, J. Org. Chem., 39, 2971 (1974).
- 4. F. Sztaricskai, A. Neszmélyi, and R. Bognár, Tet. Lett., 21, 2983 (1980).
- 5. P.A.J. Gorin and M. Mazurek, Can. J. Chem., 53, 1212 (1975).
- 6. E. Breitmaier, W. Voelter, G. Jung, and C. Taenzer, Chem. Ber., 104, 1147 (1971).
- 7. K. Bock and C. Pedersen, J. C. S. Perkin II, 293 (1974).

(Received in UK 28 July 1980)